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ABSTRACT1

This thesis examines the impact of elections on climate change2

attitudes and policy support. Using a data set of 2,583 survey re-3

sponses collected over 3 waves, we apply two complementary tem-4

poral methods: a PVAR model (panel vector autoregression) and the5

PCMCI+ (Peter and Clark Momentary Conditional Independence).6

PVAR models the linear dynamic structure of climate-related at-7

titudes and PCMCI+ enables the data-driven discovery of causal8

links over time. By comparing their results, we assess how climate9

perceptions, willingness to pay for climate solutions, and support10

for specific climate policies evolve around the 2020 US elections.11

Our findings show that climate views remain mostly stable, but12

some changes in perceived harm and policy support occur around13

elections. Political beliefs also shape the amount of money people14

are willing to pay for climate action. The study contributes to un-15

derstanding how politics shape public opinion on climate issues,16

offering insights for policymakers and researchers.17
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• Mathematics of computing→ Time series analysis.19
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1 INTRODUCTION28

This paper explores the relationship between political events, poli-29

cies, and society’s attitudes toward climate change. Climate change30

is one of the most important global challenges at the moment. For31

this reason, understanding how elections and policies shape public32

opinion is crucial. This knowledge is important for policy makers33

and researchers who need to get the public involved in tackling34

climate change.35

How do people’s views on Climate Change and on related policies36

change during an election?37

The research question can be answered by examining people’s38

opinions towards climate change and related policies during the39

2020 US elections. The following sub-questions will guide our anal-40

ysis:41

RQ1. Does support for climate policies (like carbon taxes or emis-42

sions standards) change during elections? And is this support43

influenced by personal or community-level perceptions of44

climate harm?45

RQ2. Does willingness to pay for climate solutions vary during46

elections and what factors influence it?47

RQ3. Does political ideology moderate the relationship between48

perceptions of harm and willingness to pay?49

WTP for Climate Solutions

ElectionsPolitical Affiliation

WTP for Climate Solutions

Perceptions of CC Harm Support for Climate Policy

Figure 1: Conceptual Model: Key Relationships Based on
Research Questions

2 RELATEDWORK50

This section reviews previous research on the relationship between51

elections, climate perceptions, and policy support.52

Hahnel et al., 2020 [2] found that when political leaders frame cli-53

mate change as a divisive issue, public opinion becomes polarized on54

perceptions of climate harm. Similarly, Fisher (2022) [6] found that55

different ideologies influence how different parties assess climate56

risks, with left-leaning voters more likely to express concern for57

vulnerable populations (e.g., poor communities) than right-leaning58

voters. Given these findings, our study examines whether perceived59

harm to poor or wealthy communities changes during elections.60

Fisher also found that ideological polarization influenceswhether61

people translate perceptions of climate risk into policy preferences.62

Studies on voter behavior suggest that Democrats are more likely to63

convert climate concern into higher WTP for solutions compared to64

Republicans. Based on this, our study investigates whether political65

affiliation moderates the effect of perceived harm on WTP during66

elections.67

Schulze et al. (2021) [20] found that willingness to pay (WTP) for68

climate policies declines in pre-election periods, as voters become69

more sensitive to financial costs. Research suggests that conserva-70

tives are generally less supportive of costly interventions, but may71

express higher WTP when policies are framed as benefiting local72

communities or economic stability. Ogami (2024) [15] found that73

voters tend to prioritize low-cost climate solutions closer to elec-74

tions due to economic concerns influenced by campaign rhetoric.75

Based on these findings, our study examines whether elections76

shape WTP for climate solutions.77

The CIRES study on the opinions on climate change during78

elections [1] found that Democrats consistently express greater79

support for climate policies, such as carbon taxes, while Republicans80

remain more resistant. Similarly, Ogami explains that politicians81

often avoid promoting polarizing policies, such as carbon taxes, in82

the lead-up to elections to minimize losing voters. The CIRES study83

also found that people experiencing direct climate impacts, such84

as extreme weather events, tend to support pro-climate candidates85

and policy measures. Based on this, our study examines whether86

support for specific policies changes during elections and whether87

these shifts are influenced by political affiliation or perceptions of88

family health and economic well-being.89
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3 METHODOLOGY90

3.1 Resources91

Previous research has shown that elections influence climate atti-92

tudes and policy support, but the direction and magnitude of these93

effects are unclear. This study addresses this gap by applying two94

temporal methods: PVAR and the PCMCI+ algorithm. Although95

PVAR captures dynamic interdependencies among variables over96

time under parametric assumptions, PCMCI+ offers a data-driven97

approach to uncover causal relationships from time series. Using98

the Tigramite Python package [17], we will try to identify the causal99

impact of elections on climate perceptions, WTP, and support for100

climate policies.101

The primary resource for this study is a longitudinal data set102

consisting of 2,583 survey responses from 861 participants collected103

over 3 waves from June 2020 to August 2021. Table 1 provides an104

overview of the key variables included in the dataset and groups105

them according to their thematic role in the analysis.106

Variable Description
Climate Change Perception (cc4_*)
cc4_world Perceived harm of climate change on the world
cc4_wealthUS Perceived harm on wealthy U.S. communities
cc4_poorUS Perceived harm on poor U.S. communities
cc4_comm Perceived harm on local communities
cc4_famheal Perceived harm on family health
cc4_famecon Perceived harm on family economy
WTP (ccSolve*)
ccSolve100 Support for policies at $100/month
ccSolve50 Support for policies at $50/month
ccSolve10 Support for policies at $10/month
ccSolve1 Support for policies at $1/month
ccSolve0 Support for policies (no cost specified)
Climate Policy Support (cc_pol_*)
cc_pol_tax Support for a carbon tax
cc_pol_car Support for stricter car emissions
Political Affiliation and Ideology (pol_*)
pol_party Political party identification (Rep, Dem, Ind)
pol_lean Political party leaning (Lean Rep, Lean Dem)
pol_ideology Political ideology (Conservative, Moderate, Liberal)
Demographics (dem_*)
dem_income Respondent’s reported income level
dem_male Respondent’s gender
dem_age Respondent’s age
dem_educ Respondent’s education level

Table 1: Description of Key Variables (raw data)

Table 2 summarizes the response options and coding for key107

variables used in the analysis.108

Variable Coding Response Scale

cc4_* 1 to 4 Not at all to A great deal
ccSolve* 1 to 5 Strongly disapprove to Strongly approve
cc_pol_* 1 to 5 Strongly oppose to Strongly support
pol_party 1 to 3 Republican, Democrat, Independent
pol_lean 1 to 4 Leaning Rep., Leaning Dem., Neither
pol_ideology 1 to 5 Very conservative to Very liberal
dem_income 1 to 6 <$25k to >$200k
dem_educ 1 to 6 <High School to Advanced degree
dem_age 18 to 99 Age in years
dem_male 0, 1, 77 Female, Male, Self-described

Table 2: Variable coding and response scales (raw data)

Table 3 provides summary statistics for all variables in the dataset109

prior to filtering. For each variable, the table reports the number and110

percentage of missing values, as well as key distribution metrics:111

mean, standard deviation, and the five-number summary (minimum,112

25th percentile, median, 75th percentile, and maximum).113

Variable NA% Mean SD P0 P25 P50 P75 P100

cc4_world 0.00% 2.971 0.994 1 2 3 4 4
cc4_wealthUS 0.00% 2.336 1.010 1 2 2 3 4
cc4_poorUS 0.00% 2.797 1.053 1 2 3 4 4
cc4_comm 0.00% 2.464 0.988 1 2 2 3 4
cc4_famheal 0.00% 2.262 1.010 1 1 2 3 4
cc4_famecon 0.00% 1.959 1.021 1 1 2 3 4
ccSolve100 79.78% 2.469 1.261 1 1 2.5 3 5
ccSolve50 80.04% 2.606 1.287 1 1 3 4 5
ccSolve10 80.27% 2.959 1.327 1 2 3 4 5
ccSolve1 80.15% 3.309 1.367 1 3 3 4 5
ccSolve0 79.76% 3.402 1.275 1 3 4 4 5
cc_pol_tax 0.44% 3.193 1.314 1 2 3 4 5
cc_pol_car 0.44% 3.717 1.230 1 3 4 5 5
pol_party 0.00% 2.016 0.789 1 1 2 3 3
pol_lean 68.08% 2.758 1.265 1 2 2 4 4
pol_ideology 0.00% 2.887 1.068 1 2 3 3 5
dem_income 0.00% 3.314 1.543 1 2 3 5 6
dem_educ 0.00% 3.611 1.601 1 2 3 5 6
dem_age 0.00% 54.28 15.16 18 42 56 67 93
dem_male 0.00% Female = 52.4%, Male = 47.4%, Self-described = 0.1%

Table 3: Data Summary (raw data)

To complement the summary statistics above, Figure 2 visualizes114

the distribution of key variables (raw data).115

Figure 2: Distributions with Density Overlay (raw data)
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3.2 Approach116

To analyze how climate attitudes change during elections, we apply117

two complementary time series methods: a PVAR model [10] and118

the PCMCI+ causal discovery algorithm [18].119

PVARmodels are well suited for analyzing systems of interdepen-120

dent variables in panel data. Each variable is modeled as a function121

of its own lag and the lags of all other variables. This allows us122

to capture bidirectional feedback dynamics across time, making it123

ideal for understanding how climate concern, policy support, and124

political attitudes influence one another longitudinally [13].125

PCMCI+ is a constraint-based causal discovery method designed126

for time series data. It relies on conditional independence (CI) test-127

ing to infer the presence or absence of lagged causal relationships128

between variables. While PCMCI+ supports nonparametric CI tests129

such as GPDC or CMIknn, we use linear partial correlation (Par-130

Corr) tests, given the short panel length (𝑇 = 3) in our data [18].131

Traditional approaches, such as pooled OLS or fixed-effects re-132

gressions, assume unidirectional influence and do not account for133

dynamic feedback loops. They may estimate average associations134

over time, but they cannot adequately model temporal causality or135

mutual interdependence among variables. In contrast, both PVAR136

and PCMCI+ allow for bidirectional, time-lagged relationships that137

better reflect the evolving nature of public opinion during elections.138

This thesis contributes methodologically by combining a dy-139

namic system-based model (PVAR) with a causal graph discovery140

framework (PCMCI+), a combination not previously applied in the141

context of climate policy attitudes shifts in election periods.142

The PVAR model produces directed graphs that represent signif-143

icant lagged effects between variables. PCMCI+ outputs a causal144

graph based on conditional independence tests. We compare these145

two graphs qualitatively to assess the robustness of the temporal146

relationships.147

Table 4 maps each survey wave to the research questions it148

informs.149

Wave Research Questions Addressed
Wave 2 Provides baseline values for all lagged predictors
Wave 3 Captures dynamics during the election
Wave 4 Allows continued observation of attitudes after election

Table 4: Timeline structure and relevance of each wave

The implementation relied entirely on open-source Python pack-150

ages. Table 5 lists the key packages used throughout the analysis.151

3.3 Steps152

The process begins with preparing the panel dataset and estimating153

PVAR models to explore the temporal dynamics of climate attitudes154

followed by comparing them with a causal graph algorithm in the155

final step. An overview of these main stages is provided in Figure 3.156

3.3.1 Data Preparation. Several variables of harm perception were157

originally recorded on different Likert scales (some 1–4, others 1–6).158

These were linearly transformed to a common scale of 1 to 5 so159

that all predictors could be compared on the same scale.160

The pol_party and pol_lean variables were merged into a sin-161

gle pol_score variable to create a continuous scale of political162

alignment from left to right. This scale ranges from –2 (strong163

Tool/Library Purpose

graphviz [5] Rendering directed acyclic graphs (DAGs)
matplotlib [11] Static plotting
networkx [7] Construction and layout of causal graphs
numpy [9] Numerical operations and array handling
pandas [14] Data manipulation and panel structuring
plotly [16] Interactive network visualizations
seaborn [22] Statistical graphics for EDA
skimpy [3] Quick summaries and data diagnostics
statsmodels [21] PVAR estimation
tigramite [19] Time-lagged causal discovery (PCMCI+)

Table 5: Software Tools Used in the Analysis. Full citations
available in the References section.

1. Data
Preparation

2. PVAR
Estimation

3. PCMCI+
Causal

Discovery

4. Cross-
Method

Comparison

Figure 3: Overview of the main analytical steps in the study

Democrat) to 2 (strong Republican). For those who identified as164

Independents (pol_party = 3), their placement depended on their165

leaning: those leaning Democrat (pol_lean = 2) received a score of166

–1, those leaning Republican (pol_lean = 1) received a 1, and those167

who leaned neither way (pol_lean = 4) were assigned a neutral168

score of 0.169

Missing values in the two policy support variables (cc_pol_tax,170

cc_pol_car) were filled with the neutral midpoint (value 3). WTP171

variables (ccSolve100, ccSolve50, etc.) were combined into a sin-172

gle, scaled measure (ccSolve), rescaled to a 1–5 scale based on173

dollar weighting. Rows with no WTP response were excluded.174

To enable comparisons between subgroups, three demographic175

variables were recoded into binary format, as shown in Table 6.176

Variable Binary Recoding Rule

dem_income Low income (1–4) recoded as 0
High income (5–6) recoded as 1

dem_educ Non-advanced degrees (1–5) recoded as 0
Advanced degree (6) recoded as 1

dem_male Female (0) and self-described (77) recoded as 0
Male (1) recoded as 1

Table 6: Binary Recoding of Demographic Variables

The data set was reshaped into a long format indexed by re-177

spondent ID and wave number (2, 3, and 4). Lagged versions of all178
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time-varying variables were created for PVAR and causal modeling.179

Table 7 summarizes the descriptive statistics of the key variables in180

the data set after filtering.181

Variable NA% Mean SD P0 P25 P50 P75 P100

cc4_world 0.00% 3.643 1.308 1 2.33 3.67 5.00 5
cc4_wealthUS 0.00% 2.767 1.350 1 2.33 2.33 3.67 5
cc4_poorUS 0.00% 3.401 1.407 1 2.33 3.67 5.00 5
cc4_comm 0.00% 2.932 1.310 1 2.33 2.33 3.67 5
cc4_famheal 0.00% 2.664 1.321 1 1.00 2.33 3.67 5
cc4_famecon 0.00% 2.245 1.337 1 1.00 2.33 3.67 5
ccSolve 0.00% 1.732 0.9707 1 1.00 1.00 2.00 5
cc_pol_tax 0.00% 3.182 1.299 1 2.00 3.00 4.00 5
cc_pol_car 0.00% 3.713 1.218 1 3.00 4.00 5.00 5
pol_score 0.00% -0.1754 1.697 -2 -2.00 0.00 2.00 2
pol_ideology 0.00% 2.886 1.054 1 2.00 3.00 3.00 5
dem_income 0.00% Low = 69.6%, High = 30.4%
dem_educ 0.00% Low = 86.1%, High = 13.9%
dem_age 0.00% 55.47 14.80 19 43.00 58.00 67.00 93
dem_male 0.00% Female/Self-described = 52.5%, Male = 47.5%

Table 7: Data Summary (after filtering)

To complement the summary statistics above, Figure 4 visualizes182

the distribution of key variables (after filtering).183

Although the dataset includes 861 respondents in 3 waves, it184

does not represent the broader US population and the results should185

be viewed as indicative of broader trends rather than as fully gen-186

eralizable. To mitigate potential bias, demographic variables were187

inspected for distributional imbalances, and binary groups were188

constructed to ensure that each category reflected balanced splits.189

3.3.2 PVAR Estimation. For RQ1, we estimate global PVAR(1) mod-190

els in which policy support variables are regressed on their own lag191

and all other predictors, allowing us to assess how support evolves192

over time and whether it is influenced by perceptions of harm. For193

RQ2, we focus on ccSolve as the dependent variable in a global194

PVAR(1) model, examining its evolution over time, the potential195

impact of elections on WTP, and identifying which predictors ac-196

count for variation in WTP. For RQ3, our PVAR(1) model includes197

interaction terms between political ideology and each harm per-198

ception variable to determine whether the link between perceived199

climate harm and WTP differs between ideologies.200

3.3.3 PCMCI+ Causal Discovery. : Apply PCMCI+ to estimate a201

time-lagged causal graph from the panel data.202

3.3.4 Cross-Method Comparison. : Compare the structure and di-203

rection of PCMCI+ links with those found in the PVAR models.204

3.4 Evaluation205

To assess the reliability of our results, we performed bootstrap re-206

sampling to estimate confidence intervals and standard errors for207

the coefficients in our PVAR models. Specifically, we applied a case208

resampling procedure, where we sampled individuals (PIDs) with209

replacement and re-estimated the models across 1,000 bootstrap210

iterations. For each iteration, we constructed a new dataset by select-211

ing a set of PIDs and concatenating their corresponding timeseries212

observations. We then refitted the OLS models for each outcome of213

interest (e.g., support for carbon tax) and recorded the estimated214

coefficients. From the resulting distributions, we computed boot-215

strap based standard errors and 95% percentile confidence intervals.216

Figure 4: Distributions with Density Overlay (after filtering)

This resampling approach is commonly used in panel data settings217

[8] [4]. The full bootstrapping procedure is implemented in Python218

and documented in the project repository. Summary tables of the219

bootstrap distributions and coefficient intervals are provided in220

Appendix D.221

To assess the stability of causal links identified by PCMCI+, we222

implemented a bootstrap procedure across 100 resampled datasets.223

In each iteration, we resampled time points (with replacement)224

uniformly across all cross-sectional units to preserve the panel225

structure. For every bootstrap sample, we re-ran PCMCI+ using226

ParCorr as the CI test with 𝛼 = 0.01 and a maximum lag of 1. We227

tracked the frequency with which each directed edge appeared228

as significant across the 100 runs. The most stable links were all229

autoregressive (e.g., cc4_world → cc4_world), each appearing230

in 100% of the bootstrapped samples. Other non-autoregressive231

links, such as cc_pol_tax → ccSolve, appeared less frequently232

(10%), indicating weaker or less stable relationships. The results are233

provided in Appendix D Table 16, and the code is available in the234

project repository.235
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4 RESULTS236

4.1 PVAR Estimation237

Before estimating the separate PVAR(1) models for each of our238

research questions, we first estimated a global PVAR model that239

includes all relevant variables simultaneously. This model serves as240

the foundation of our analysis, offering a comprehensive picture of241

the time-lagged relationships in the data. The global model captures242

the joint dynamics across climate beliefs, policy support, political243

orientation, and demographic factors, providing one of the main244

empirical results of this study. The individual models presented in245

later sections are subsets of this global model, extracted to focus246

on specific outcomes and facilitate interpretation. These targeted247

models are used primarily to generate simplified visualizations and248

to help the reader better understand the local structure of the re-249

lationships observed in the global PVAR graph. Figure 5 displays250

the PVAR lagged-effects graph, capturing statistically significant251

(𝑝 < 0.01) links from time 𝑡−1 to 𝑡 . Each edge represents a standard-252

ized regression coefficient, with green and red indicating positive253

and negative effects, respectively.254

Figure 5: PVAR Lagged Effects (p < 0.01). Edge labels indicate
standardized coefficients from lagged OLS models. Green =
positive, Red = negative effects.

4.2 RQ1 – Drivers of Support for Climate Policy255

To investigate whether support for climate policies fluctuates dur-256

ing elections, and whether such support is shaped by perceptions257

of climate-related harm, we estimated a reduced-form panel vec-258

tor autoregression (PVAR(1)) model. The analysis focused on two259

outcome variables: support for carbon taxes (cc_pol_tax) and sup-260

port for vehicle emissions standards (cc_pol_car). Each regression261

included lagged values for 15 predictors, and standard errors were262

clustered at the respondent level. Figure 6 displays the estimated263

coefficients using dot-whisker plots, highlighting statistically signif-264

icant predictors at the 𝑝 < 0.01 level with 99% confidence intervals.265

Figure 6: Predictors of support for carbon taxes and emissions
standards. The figure displays results from two reduced-form
PVAR(1) regressions using dot-whisker plots. Each dot rep-
resents a regression coefficient estimate, and the horizontal
lines denote 99% confidence intervals. Predictors are ordered
by the size and direction of their effects, with statistically sig-
nificant results (𝑝 < 0.01) shown in color and non-significant
ones in gray. A vertical line at zero indicates no effect.

Support for climate policies remains stable over time. Prior sup-266

port for either carbon taxes or emissions standards is a significant267

and positive predictor of subsequent support for the same pol-268

icy, indicating that individuals tend to maintain stable preferences.269

There is also evidence of cross-policy spillover, with prior support270

for emissions standards (cc_pol_car) significantly predicting later271

support for carbon taxes and vice versa. These findings show that272

people’s views on climate policies remain mostly the same.273

Support for carbon taxes is significantly influenced by several274

attitudinal and demographic predictors. Individuals who perceive275

that climate change harms the world (cc4_world) are more likely to276

support carbon taxation. This global perception of harm emerges as277

a robust positive driver of support, highlighting the role of broader278

environmental concern. Interestingly, personal perceptions of cli-279

mate harm — such as concern for one’s own community (cc4_comm)280

or family health (cc4_famheal) — do not significantly influence281

support for carbon taxes at the stricter 𝑝 < 0.01 threshold. Edu-282

cation level (dem_educ) is also positively associated with support283

(p = 0.0047), suggesting that more educated respondents are more284

receptive to market-based climate solutions. However, this relation-285

ship did not meet the stricter threshold (p < 0.01) in the full joint286

model used to generate Figure 5. The drop in statistical significance287

is not due to a diminished effect size — the coefficient remains288

substantial (0.174) — but rather to a relatively high standard er-289

ror (0.068), which reduces the model’s confidence in the estimate.290

Furthermore, the willingness to financially contribute to climate291

solutions (ccSolve) significantly predicts support for carbon taxes.292
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In contrast, the political orientation (pol_score) exhibits a nega-293

tive significant relationship, with more conservative individuals294

being less supportive of carbon taxes.295

The emission standards model reveals a somewhat different set296

of predictors. Again, global harm perception (cc4_world) remains297

a significant and positive predictor of support. In addition, concern298

about the impact of climate change on the poor in the United States299

(cc4_poorUS) is positively associated with support. This suggests300

that concerns about fairness, especially how climate change affects301

poorer people in the country, influence support for climate rules.302

As with the carbon tax model, both autoregressive and cross-policy303

predictors are significant. Past support for emissions standards304

(cc_pol_car) and carbon taxes (cc_pol_tax) each positively influ-305

ence current support for emissions standards. Demographic char-306

acteristics do not reach statistical significance in this model. This307

shows that personal values and beliefs matter more than things like308

age, income, or education when it comes to supporting climate rules.309

Unlike carbon taxes, emission standards appear less ideologically310

polarized, as political orientation does not emerge as a significant311

predictor.312

Demographic variables such as dem_educ_lag, dem_income_lag,313

and dem_male_lag show the highest standard errors in both the314

carbon tax and emissions standards models. These predictors con-315

tribute disproportionately to overall model uncertainty, as evi-316

denced by their wide confidence intervals in the dot-whisker plots317

in Figure 6 and elevated standard errors in Appendix C Figure 12.318

Several factors may explain the imprecision associated with319

demographic predictors. First, characteristics such as gender and320

education are largely time-invariant, offering limited within-subject321

variation across survey waves. Second, some of the high standard322

errors for demographic variables such as gender, income, and edu-323

cation may be due to small subgroup sizes in the data. For example,324

there are only 42 observations from female or self-described respon-325

dents with low income and high education, 43 from male respon-326

dents with the same traits, and 46 from female or self-described327

respondents with high income and high education. These small328

groups reduce the ability of the model to estimate precise effects,329

likely contributing to the wide confidence intervals observed in330

Figures 6 and 12. Table 8 in Appendix C shows the number of obser-331

vations for each subgroup. It should be noted that variance inflation332

factors (VIFs) for these variables are low (Table 9 in in Appendix C)333

[12], indicating that multicollinearity is not the primary source334

of uncertainty. Taken together, these considerations suggest that335

demographic predictors should be interpreted with caution in this336

analysis.337

Together, these results suggest that support for climate policy338

during elections is primarily shaped by global environmental con-339

cern, policy consistency, and - especially in the case of emissions340

standards — concern for social fairness. In contrast, perceptions of341

local or familial harm do not play a statistically significant role in342

shaping support, contrary to some expectations in the literature.343

The difference in how political views affect support for the two344

policies suggests that carbon taxes are more politically divisive345

than policies like emissions standards.346

Overall, the analysis shows that people’s views on climate poli-347

cies do not change during short-term political events such as elec-348

tions. Instead, people’s views are based on long-lasting values and349

past opinions. This is important for understanding how likely cli-350

mate action will succeed, especially during elections when politi-351

cians are more likely to listen to voters.352

4.3 RQ2 – Drivers of WTP for Climate Solutions353

The reduced-form PVAR(1) model for ccSolve (willingness to pay354

for climate action) reveals that attitudes remain highly stable through-355

out the election period. Among all lagged predictors, only one vari-356

able - prior support for a carbon tax (cc_pol_tax) — emerges as a357

statistically significant predictor at the 𝑝 < 0.01 level. This finding358

indicates that individuals who previously expressed support for359

carbon pricing are more likely to report a willingness to pay for360

broader climate solutions in subsequent waves. Figure 7 displays361

the estimated coefficients using dot-whisker plots, highlighting362

statistically significant predictors at the 𝑝 < 0.01 level with 99%363

confidence intervals.364

Figure 7: Predictors of willingness to pay for climate change
solutions (ccSolve). Dot-whisker plots show coefficient esti-
mates with 99% confidence intervals. Only prior support for
carbon tax (cc_pol_tax) is statistically significant (𝑝 < 0.01),
shown in black.

An inspection of the standard errors reveals that dem_educ_lag,365

dem_income_lag, and dem_male_lag exhibit the largest standard366

errors among all predictors (see Figure 13 in Appendix C). These367

three demographic variables contribute the most to the overall368

6



uncertainty of the model, making their estimated effects less pre-369

cise. This is visually reflected in the long whiskers observed in the370

dot-whisker plot (Figure 7), particularly for dem_educ_lag, which371

had the widest confidence interval despite being conceptually im-372

portant. Several factors likely contribute to this uncertainty. First,373

there may be limited variation or small sample sizes within cer-374

tain demographic subgroups. Second, demographic characteristics375

such as education and gender tend to remain constant across sur-376

vey waves, reducing within-subject variability. In particular, the377

variance inflation factors (VIFs) for these predictors are low (see378

Table 10 in Appendix C), indicating that multicollinearity is not a379

primary concern in this model.380

4.4 RQ3 – Moderating Role of Political Ideology381

To explore this question, we extended the PVAR(1) model to include382

interaction terms between perceived climate harms and the politi-383

cal ideology of the respondents. The aim was to test whether the384

effect of harm perceptions on the willingness to financially support385

climate solutions varies across the ideological spectrum.386

Figure 8 presents the results of the full interaction model. Among387

all predictors and interaction terms, the only variable that is sta-388

tistically significant at the 𝑝 < 0.01 level is prior support for a389

carbon tax (cc_pol_tax). This confirms a consistent pattern seen390

in previous models: individuals who already support specific cli-391

mate policies are more likely to express a willingness to pay for392

climate solutions in general.393

None of the interaction terms between harm perceptions and po-394

litical ideology— such as cc4_world × pol_ideology, cc4_poorUS395

× pol_ideology, or cc4_famheal × pol_ideology— achieve sta-396

tistical significance. This suggests that political ideology does not397

meaningfully alter how people translate climate risk perceptions398

into willingness to act financially.399

The full interaction model exhibits substantial multicollinear-400

ity, especially between harm perception variables and their inter-401

action terms. Standard errors for main harm predictors such as402

cc4_famheal, cc4_comm, and cc4_world exceed 0.10, with vari-403

ance inflation factors (VIFs) for interaction terms ranging from 40404

to 80 — well above acceptable thresholds (see Table 11 in Appen-405

dix C). This collinearity inflates standard errors, reduces statistical406

power, and makes it difficult to isolate individual effects (see Fig-407

ure 14 in Appendix C).408

To address multicollinearity, we constructed a harm_index to409

summarize all six harm perception variables into a single factor,410

which was then interacted with political ideology. The simplified411

specification resulted in improved model stability. All variance412

inflation factors (VIFs) for the harm index model remained below413

the conventional threshold of 10 (see Table 12 in Appendix C),414

and standard errors for key predictors and interaction terms were415

substantially reduced (see Figure 15 in Appendix C).416

Figure 9 presents the results of the simplified moderation model417

using the harm_index.418

The results of both the full interaction and simplified harm in-419

dex models suggest that political ideology does not significantly420

moderate the relationship between climate harm perceptions and421

willingness to pay. However, simplifying the model structure sub-422

stantially improved the statistical clarity. The harm index approach423

Figure 8: Moderation model with interaction terms between
harm perceptions and political ideology. Only prior support
for a carbon tax is significant (𝑝 < 0.01).

yielded lowermulticollinearity, narrower confidence intervals while424

preserving the conclusion that prior climate policy support remains425

the strongest and most consistent predictor of financial engagement426

with climate solutions.427

4.5 PCMCI+ Causal Discovery428

Figure 10 shows the graph generated by PCMCI+, which uses par-429

tial correlation as the CI test to isolate direct causal links. Edge430

colors represent momentary conditional information (MCI), with431

red indicating positive effects and blue indicating negative effects.432

The color intensity reflects the strength of the dependency. This433

PCMCI+ graph shows that most variables are strongly influenced434

by their own past values. We can tell this from the dark red colors435

of the nodes, which represent strong self-dependence (auto-MCI).436

There are only a few meaningful connections between different437

variables. One example is that pol_score has a small but statis-438

tically significant effect on pol_ideology, suggesting that when439

someone’s political score changes, their reported ideology tends to440

shift slightly in the opposite direction at the next time point.441

4.6 PVAR and PCMCI+ Comparison442

To understand the temporal and causal structure of climate attitudes,443

we compare PVAR and PCMCI+. Both rely on longitudinal panel444

data, but differ in their underlying assumptions and inference logic.445
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Figure 9: Moderation model using a composite harm index.
Interactionwith political ideology is not significant, butmore
precisely estimated.

To directly compare results, Figure 11 presents a matrix of lag-1446

edges detected by each method at 𝛼 = 0.01. PVAR identifies 46447

links, while PCMCI+ finds just 15. In this analysis, PCMCI+ uses448

partial correlation (ParCorr) as its CI test, which captures only linear449

associations, potentially missing non-linear effects. Similarly, we450

estimated the Panel Vector Autoregression (PVAR) using Ordinary451

Least Squares (OLS), which also assumes linearity. Therefore, while452

both methods help uncover temporal dependencies, they are limited453

in their ability to detect complex, nonlinear relationships that may454

exist in the data.455

The edge from pol_score to pol_ideology is detected by both456

methods.457

5 DISCUSSION458

Support for climate policies remains stable during elections, consis-459

tent with findings from the CIRES study [1] and Ogami (2024) [15],460

which suggest that attitudes are shaped by values, not elections.461

Global harm perception is a consistent predictor of support across462

policies, reinforcing theories that threats to the whole world moti-463

vate us to act (Hahnel et al. (2020) [2], Fisher (2022) [6]). Support464

for one policy (e.g., carbon tax) predicts support for another (e.g.,465

emissions standards). Only prior support for carbon taxes predicts466

WTP, suggesting voters’ financial commitment to climate action is467

slow to change in elections (Schulze et al., (2021) [20]).468

Figure 10: PCMCI+ causal graph. Nodes are colored by auto-
MCI (self-dependence), and edges reflect causal strength.

Figure 11: Edge Comparison Matrix: Directed lag-1 edges
detected by PVAR and PCMCI+. Only statistically significant
links at 𝛼 < 0.01 are displayed.

Carbon tax support is ideologically polarized, with conservatives469

less supportive which is consistent with the CIRES and Fisher stud-470

ies. In contrast, emissions standards are less polarized. Concern for471

the poor (cc4_poorUS) significantly predicts support for emissions472

8



standards, highlighting that fairness considerations (Fisher (2022))473

influence regulatory policy support more than taxation.474

Contrary to expectations from the CIRES study (2024), personal475

and local harm perceptions (community, family) are not significant476

predictors of either policy support or WTP. This finding challenges477

the assumptions that direct exposure or proximity to harm is a478

primary driver of climate action support.479

Political ideology does not significantly moderate how climate480

harm perceptions translate into WTP, contradicting parts of the481

literature (Fisher (2022)). Even after improving model stability482

through a harm index, no moderation effect emerged thus indicat-483

ing that ideological commitments shape climate action indirectly484

rather than interactively.485

High standard errors for demographic variables (especially gen-486

der, income, and education) reflect time-invariant traits and small487

subgroup sizea. These predictors should be interpreted with cau-488

tion. There is no evidence of multicollinearity for demographics489

(low VIFs), so imprecision probably is a result of data sparsity, not490

model redundancy.491

PVAR detects broader temporal correlations. PCMCI+ yields a492

sparser, more conservative network that isolates direct causal links.493

Fewer shared edges highlight differing inference logics: predic-494

tive vs conditional independence. The shared edge (pol_score→495

pol_ideology) found by both PVAR and PCMCI+ suggests that496

people’s political identity, such as whether they lean Democrat497

or Republican, strongly influences how they describe themselves498

ideologically. The fact that this link appears in both models makes499

it more reliable and shows that political identity plays a key role in500

how people form views on climate issues and policies.501

6 CONCLUSION502

This study examined how public support for climate policies and503

willingness to pay (WTP) for climate solutions evolve during elec-504

tions. Applying both Panel VAR and PCMCI+ models, we found505

that climate attitudes are remarkably stable over time. Prior sup-506

port for climate policies, especially carbon taxes, strongly predicts507

both policy support and WTP, while global perceptions of climate508

harm (e.g., harm to the world) are more influential than localized509

or personal concerns.510

While ideology shapes overall policy preferences, it does not511

appear to influence how people translate climate risks into financial512

support contrary to previous studies. These findings suggest that513

values, not elections, drive climate attitudes thus highlighting the514

importance of long-term engagement strategies over short-term515

campaign messaging.516
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Appendix A RISK ASSESSMENT590

A.1 Computational Challenges with PCMCI+591

Risk: The PCMCI+ algorithm can be computationally intensive,592

especially with large datasets and multiple time lags.593

Mitigation: Start with a subset of data to test and optimize594

the PCMCI+ implementation. Use cloud computing resources if595

necessary or the Snellius Dutch National supercomputer.596

Plan B: If issues persist, consider simplifying the model.597

A.2 Ethical Considerations598

Risk: Potential misuse of the findings for political purposes.599

Mitigation:Clearly state the limitations of the study and provide600

guidelines for ethical use of the results in the thesis and repository.601

Plan B: Include an "Ethical Use" section, outlining specific sce-602

narios of appropriate and inappropriate use of the findings.603

Appendix B GENERATIVE AI604

Throughout the research process, GenAI tools were used in a lim-605

ited and clearly defined manner to support productivity, not to606

generate academic content. Specifically, OpenAI’s ChatGPT and607

GitHub’s Copilot were used to debug Python code and improve the608

visualization of causal graphs. In all cases, the modeling choices,609

and interpretation of results were made by the author. No text610

or analysis was generated or copied without critical review and611

full authorship responsibility. The use of GenAI adhered to the612

University’s guidelines for ethical use of AI in research.613

Appendix C RESULTS614

Figure 12: Standard errors for predictors in the carbon tax
model (cc_pol_tax, left) and emissions standards model
(cc_pol_car, right). In both cases, the demographic variables
— education, income, and gender — exhibit the highest stan-
dard errors

Appendix D BOOTSTRAPPING615

We do not include a separate table of bootstrap results for RQ3,616

as the estimated effects and their stability closely mirror those617

reported for RQ2. The bootstrap results for RQ3 are available in the618

project code repository.619

Table 8: Subgroup Sizes by Gender, Income, and Education

Gender Income Education Count

Female / Self-described Low High 42
Male Low High 43

Female / Self-described High High 46
Male High High 111

Female / Self-described High Low 153
Male High Low 213
Male Low Low 453

Female / Self-described Low Low 661

Table 9: Variance Inflation Factors (VIF) - RQ1

Variable VIF Interpretation

cc4_comm_lag 4.66 Some correlation (acceptable)
cc4_famheal_lag 4.22 Some correlation (acceptable)
cc4_poorUS_lag 3.94 Some correlation (acceptable)
cc4_world_lag 3.60 Some correlation (acceptable)
cc4_famecon_lag 2.44 Some correlation (acceptable)
cc4_wealthUS_lag 2.38 Some correlation (acceptable)
cc_pol_car_lag 2.17 Some correlation (acceptable)
cc_pol_tax_lag 2.16 Some correlation (acceptable)
pol_score_lag 1.99 Low correlation (no multicollinearity)
pol_ideology_lag 1.94 Low correlation (no multicollinearity)
dem_income_lag 1.16 Low correlation (no multicollinearity)
dem_educ_lag 1.14 Low correlation (no multicollinearity)
ccSolve_lag 1.07 Low correlation (no multicollinearity)
dem_age_lag 1.06 Low correlation (no multicollinearity)
dem_male_lag 1.06 Low correlation (no multicollinearity)

Figure 13: Standard errors of predictors in the ccSolvemodel.
Variables with the highest uncertainty are shown at the top.
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Table 10: Variance Inflation Factors (VIF) - RQ2

Variable VIF Interpretation

cc4_comm_lag 4.66 Some correlation (acceptable)
cc4_famheal_lag 4.22 Some correlation (acceptable)
cc4_poorUS_lag 3.94 Some correlation (acceptable)
cc4_world_lag 3.60 Some correlation (acceptable)
cc4_famecon_lag 2.44 Some correlation (acceptable)
cc4_wealthUS_lag 2.38 Some correlation (acceptable)
cc_pol_car_lag 2.17 Some correlation (acceptable)
cc_pol_tax_lag 2.16 Some correlation (acceptable)
pol_score_lag 1.99 Low correlation (no multicollinearity)
pol_ideology_lag 1.94 Low correlation (no multicollinearity)
dem_income_lag 1.15 Low correlation (no multicollinearity)
dem_educ_lag 1.13 Low correlation (no multicollinearity)
ccSolve_lag 1.07 Low correlation (no multicollinearity)
dem_age_lag 1.06 Low correlation (no multicollinearity)
dem_male_lag 1.06 Low correlation (no multicollinearity)

Table 11: VIF - Full Interaction Model (RQ3)

Variable VIF Interpretation

cc4_comm_x_pol_ideology 86.92 High multicollinearity (problematic)
cc4_world_x_pol_ideology 77.89 High multicollinearity (problematic)
cc4_famheal_x_pol_ideology 76.56 High multicollinearity (problematic)
cc4_poorUS_x_pol_ideology 71.04 High multicollinearity (problematic)
cc4_comm 46.93 High multicollinearity (problematic)
cc4_famheal 41.32 High multicollinearity (problematic)
cc4_wealthUS_x_pol_ideology 39.09 High multicollinearity (problematic)
cc4_famecon_x_pol_ideology 32.90 High multicollinearity (problematic)
cc4_poorUS 31.39 High multicollinearity (problematic)
cc4_world 28.55 High multicollinearity (problematic)
cc4_wealthUS 23.77 High multicollinearity (problematic)
cc4_famecon 22.58 High multicollinearity (problematic)
pol_ideology 10.80 High multicollinearity (problematic)
cc_pol_car 2.18 Some correlation (acceptable)
cc_pol_tax 2.16 Some correlation (acceptable)
dem_income 1.16 Low correlation (no multicollinearity)
dem_educ 1.15 Low correlation (no multicollinearity)
ccSolve 1.08 Low correlation (no multicollinearity)
dem_age 1.07 Low correlation (no multicollinearity)
dem_male 1.06 Low correlation (no multicollinearity)

Figure 14: Standard errors for predictors in the full inter-
action model (RQ3). Harm perception variables and their
interaction terms exhibit the largest uncertainty.

Table 12: VIF - Harm Index Moderation Model (RQ3)

Variable VIF Interpretation

harm_index × pol_ideology_lag 19.65 High multicollinearity (problematic)
pol_ideology_lag 8.54 Moderate multicollinearity (monitor closely)
harm_index_lag 8.33 Moderate multicollinearity (monitor closely)
cc_pol_tax_lag 2.14 Some correlation (acceptable)
cc_pol_car_lag 2.05 Some correlation (acceptable)
dem_income 1.15 Low correlation (no multicollinearity)
dem_educ 1.14 Low correlation (no multicollinearity)
ccSolve_lag 1.07 Low correlation (no multicollinearity)
dem_male 1.06 Low correlation (no multicollinearity)
dem_age 1.04 Low correlation (no multicollinearity)

Figure 15: Standard errors in the simplified harm index
model. The interaction term is more stable, with reduced
uncertainty.

Table 13: Model vs Bootstrap Comparison – Tax Model

Variable Model 𝑝-value Bootstrap significant? Notes

const 0.0002 Yes Agreement
cc4_world_lag 0.0000 Yes Agreement
cc4_wealthUS_lag 0.0790 No Agreement
cc4_poorUS_lag 0.0451 Yes Agreement
cc4_comm_lag 0.4927 No Agreement
cc4_famheal_lag 0.9732 No Agreement
cc4_famecon_lag 0.4677 No Agreement
ccSolve_lag 0.0001 Yes Agreement
pol_score_lag 0.0000 Yes Agreement
pol_ideology_lag 0.2216 No Agreement
cc_pol_tax_lag 0.0000 Yes Agreement
cc_pol_car_lag 0.0000 Yes Agreement
dem_income 0.3301 No Agreement
dem_educ 0.0047 Yes Agreement
dem_male 0.4951 No Agreement
dem_age 0.1442 No Agreement
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Table 14: Model vs Bootstrap Comparison – Car Model

Variable Model 𝑝-value Bootstrap significant? Notes

const 0.0000 Yes Agreement
cc4_world_lag 0.0000 Yes Agreement
cc4_wealthUS_lag 0.0176 Yes Agreement
cc4_poorUS_lag 0.0014 Yes Agreement
cc4_comm_lag 0.8257 No Agreement
cc4_famheal_lag 0.9675 No Agreement
cc4_famecon_lag 0.3778 No Agreement
ccSolve_lag 0.3830 No Agreement
pol_score_lag 0.0242 Yes Agreement
pol_ideology_lag 0.0272 Yes Agreement
cc_pol_tax_lag 0.0001 Yes Agreement
cc_pol_car_lag 0.0000 Yes Agreement
dem_income 0.2275 No Agreement
dem_educ 0.4565 No Agreement
dem_male 0.9318 No Agreement
dem_age 0.4233 No Agreement

Table 15: Model vs Bootstrap Comparison – RQ2 Model

Variable Model 𝑝-value Bootstrap significant? Notes

const 0.0000 Yes Agreement
cc4_world_lag 0.1016 No Agreement
cc4_wealthUS_lag 0.7496 No Agreement
cc4_poorUS_lag 0.3938 No Agreement
cc4_comm_lag 0.2018 No Agreement
cc4_famheal_lag 0.3138 No Agreement
cc4_famecon_lag 0.3175 No Agreement
pol_score_lag 0.7426 No Agreement
pol_ideology_lag 0.1861 No Agreement
cc_pol_tax_lag 0.0000 Yes Agreement
cc_pol_car_lag 0.2054 No Agreement
ccSolve_lag 0.0701 No Agreement
dem_income 0.2384 No Agreement
dem_educ 0.2259 No Agreement
dem_male 0.1727 No Agreement
dem_age 0.0548 Yes Bootstrap-only

Table 16: Bootstrap Results for PCMCI+

Source Target Lag Frequency
cc4_world cc4_world 1 1.00
cc4_wealthUS cc4_wealthUS 1 1.00
cc4_poorUS cc4_poorUS 1 1.00
cc4_comm cc4_comm 1 1.00
cc4_famecon cc4_famecon 1 1.00
cc_pol_tax cc_pol_tax 1 1.00
cc_pol_car cc_pol_car 1 1.00
dem_income dem_income 1 1.00
dem_age dem_age 1 1.00
dem_educ dem_educ 1 1.00
dem_male dem_male 1 1.00
pol_score pol_score 1 1.00
pol_ideology pol_ideology 1 1.00
cc4_famheal cc4_famheal 1 0.79
ccSolve ccSolve 1 0.55
cc_pol_car cc_pol_tax 1 0.10
cc_pol_tax ccSolve 1 0.10
pol_score pol_ideology 1 0.06

Note: Frequency indicates the proportion of bootstrap samples (out of 100) in which
the edge was found to be statistically significant by PCMCI+ with 𝛼 = 0.01. All
autoregressive edges (variable→ itself at lag 1) appeared in 100% of the samples.
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